Activation-Induced Cytidine Deaminase Targets DNA at Sites of RNA Polymerase II Stalling by Interaction with Spt5

نویسندگان

  • Rushad Pavri
  • Anna Gazumyan
  • Mila Jankovic
  • Michela Di Virgilio
  • Isaac Klein
  • Camilo Ansarah-Sobrinho
  • Wolfgang Resch
  • Arito Yamane
  • Bernardo Reina San-Martin
  • Vasco Barreto
  • Thomas J. Nieland
  • David E. Root
  • Rafael Casellas
  • Michel C. Nussenzweig
چکیده

Activation-induced cytidine deaminase (AID) initiates antibody gene diversification by creating U:G mismatches. However, AID is not specific for antibody genes; Off-target lesions can activate oncogenes or cause chromosome translocations. Despite its importance in these transactions little is known about how AID finds its targets. We performed an shRNA screen to identify factors required for class switch recombination (CSR) of antibody loci. We found that Spt5, a factor associated with stalled RNA polymerase II (Pol II) and single stranded DNA (ssDNA), is required for CSR. Spt5 interacts with AID, it facilitates association between AID and Pol II, and AID recruitment to its Ig and non-Ig targets. ChIP-seq experiments reveal that Spt5 colocalizes with AID and stalled Pol II. Further, Spt5 accumulation at sites of Pol II stalling is predictive of AID-induced mutation. We propose that AID is targeted to sites of Pol II stalling in part via its association with Spt5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A source of the single stranded DNA substrate for activation-induced deaminase during somatic hypermutation

During somatic hypermutation (SHM), activation-induced deaminase (AID) mutates deoxycytidine on single-stranded DNA (ssDNA) generated by the transcription machinery, but the detailed mechanism remains unclear. Here we report a higher abundance of RNA polymerase II (Pol II) at the immunoglobulin heavy-chain variable (Igh-V) region compared with the constant region and partially transcribed Igh R...

متن کامل

GANP regulates recruitment of AID to immunoglobulin variable regions by modulating transcription and nucleosome occupancy

Somatic hypermutation in B cells is initiated by activation-induced cytidine deaminase-catalyzed C→U deamination at immunoglobulin variable regions. Here we investigate the role of the germinal centre-associated nuclear protein (GANP) in enhancing the access of activation-induced cytidine deaminase (AID) to immunoglobulin variable regions. We show that the nuclear export factor GANP is involved...

متن کامل

The transcription elongation complex directs activation-induced cytidine deaminase-mediated DNA deamination.

Activation-induced cytidine deaminase (AID) is a single-stranded DNA deaminase required for somatic hypermutation of immunoglobulin (Ig) genes, a key process in the development of adaptive immunity. Transcription provides a single-stranded DNA substrate for AID, both in vivo and in vitro. We present here an assay which can faithfully replicate all of the molecular features of the initiation of ...

متن کامل

Transcriptional stalling in B-lymphocytes

B cells utilize three DNA alteration strategies-V(D)J recombination, somatic hypermutation (SHM) and class switch recombination (CSR)-to somatically mutate their genome, thereby expressing a plethora of antibodies tailor-made against the innumerable antigens they encounter while in circulation. Of these three events, the single-strand DNA cytidine deaminase, Activation Induced cytidine Deaminas...

متن کامل

S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination

Immunoglobulin class switch recombination is governed by long-range interactions between enhancers and germline transcript promoters to activate transcription and modulate chromatin accessibility to activation-induced cytidine deaminase (AID). However, mechanisms leading to the differential targeting of AID to switch (S) regions but not to constant (C(H)) regions remain unclear. We show that S ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2010